飞轮储能系统是一种机电能量转换的储能装置。该系统採用物理方法进行储能,并通过电动/发电互逆式双向电机实现电能与高速运转飞轮的机械动能之间的相互转换和储存。飞轮储能系统是一种具有广阔套用前景的机械储能系统,具有储能密度高、适应性强、套用範围广、效率高、长寿命、无污染和维修花费低等优点。目前,飞轮储能系统已被套用于航空航天、UPS电源、交通运输、风力发电、核工业等领域。随着複合材料技术、磁支撑技术、动发一体机技术和多学科最佳化设计技术的不断进步,对飞轮储能技术的关注也越来越多,相关的新技术也不断出现。
基本介绍
- 中文名:飞轮储能系统
- 外文名:Flywheel energy storage system
- 套用:飞轮电池、UPS储能
- 类别:物理储能
- 学科:电气工程
- 能量转换:动能转换为电能
原理
在储能时,外界电能通过电力转换器变换后驱动电机运行,电机带动飞轮转子加速旋转,直至达到设定的某一转速。在飞轮加速旋转的过程中,飞轮以动能的形式把能量储存起来,完成电能到机械动能转换的储存能量过程,能量储存在高速旋转的飞轮体中。之后,飞轮以设定的那一转速旋转,直到接受到一个能量释放的控制信号。释能时,电机作为发电机使用,高速旋转的飞轮拖动电机发电,经电力转换器输出适用于负载的电流和电压,完成机械动能到电能转换的释放能量过程。在释能的过程中,飞轮的转速不断的下降。整个飞轮储能系统实现了电能的输入、储存和输出。
结构组成
典型的飞轮储能系统由飞轮本体、轴承、电机/发电机、电力转换器和真空室5个主要组件构成。在实际套用中,飞轮储能系统的结构有很多种。图1所示是一种飞轮与电机合为一个整体的飞轮储能系统结构示意图飞轮本体是飞轮储能系统的核心部件,作用是力求提高转子的极限角速度,减轻转子重量,最大限度地增加飞轮储能系统的储能量。目前多採用碳素纤维材料製作。 

轴承的性能直接影响飞轮储能系统的可靠性、效率和寿命。目前套用的飞轮储能系统多採用磁悬浮系统,减少电机转子旋转时的摩擦,降低机械损耗,提高储能效率。
飞轮储能系统的机械动能与电能之间的转换是以电动/发电机及其控制为核心实现的。电动/发电机集成一个部件,在储能时,作为电动机运行,由外界电能驱动电动机,带动飞轮转子加速旋转至设定的某一转速;在释能时,电机又作为发电机运行,向外输出电能,此时飞轮转速不断下降。显然,低损耗、高效率的电动/发电机是能量高效传递的关键。
电力转换器是为了提高飞轮储能系统的灵活性和可控性,并将输出电能通过调频、整流或恆压等变换为满足负荷供电要求的电能。
真空室的主要作用是提供真空环境,降低电机运行时的风阻损耗。
套用
飞轮电池
飞轮储能系统安装在电动汽车里,作为电动汽车的动力源,称之为飞轮电池。80年代初,瑞士Oerlikon工程公司,研製成功完全由飞轮功能的第一辆公共汽车。
风力发电系统
风力发电由于风速不稳定,给风力发电用户在使用上带来了困难。传统的做法是安装柴油发电机,但由于柴油机本身的特殊要求,在启动后30分钟内才能停机,而风力常常间断数秒,数分钟。这就出现了两个问题:柴油机组频繁启动,影响使用寿命;风机重启动后柴油机同时作用,会造成电能过剩。考虑到飞轮储能量大,储能密度高,充电快捷,充放电次数无限,因此。国外不少科研机构已将飞轮储能引入风力发电系统,即:风力发电机组+内燃机组+飞轮储能。
美国的Vista Tech Engineering,Ine将飞轮引入到风力发电系统,实现全程调峰,飞轮机组的发电功率为300kW,大容量储能飞轮的储能为277kW/h。试验表明.风力发电系统电能输出性能及经济性能良好,较未採用飞轮储能有很大改善 。
免蓄电池磁悬浮飞轮储能UPS
(1)在市电输入正常,或者在市电输入偏低或偏高(一定範围内)的情况下,UPS通过其内部的有源动态滤波器对市电进行稳压和滤波,保证向负载设备提供高品质的电力保障,同时对飞轮储能装置进行充电,UPS利用内置的飞轮储能装置储存能量。
(2)在市电输入质量无法满足UPS正常运行要求,或者在市电输入中断的情况下,UPS将储存在飞轮储能装置里的机械能转化为电能,继续向负载设备提供高品质并且不间断的电力保障。
(3)在UPS内部出现问题影响工作的情况下,UPS通过其内部的静态开关切换到旁路模式,由市电直接向负载设备提供不间断的电力保障。
(4)在市电输入恢复供电,或者在市电输入质量恢复到满足UPS正常运行要求的情况下,则立即切换到市电通过UPS供电的模式,继续向负载设备提供高品质并且不间断的电力保障,并且继续对飞轮储能装置进行充电。
其他套用
飞轮储能系统还可以套用在电力调峰、不间断电源、大功率脉冲放电电源、赛车、通讯系统信号传输等。