勇敢心资源网

当前位置:首页 > 问答 > 精选问答 / 正文

抛物线焦点弦公式

(2020-07-29 17:12:10) 精选问答

几何领域的抛物线焦点弦弦长公式

定义:如果一条倾斜角为α的直线过抛物线焦点F,并交抛物线于A。B两点,则AB的长度为2P/(sinα)2(即2P除以sinα的平方)

推导过程:设两交点A(X1,Y1)B(X2,Y2)

(y2-y1)/(x2-x1)=tanα

|AB|=√[(y2-y1)^2+(x2-x1)^2]=√[(tanα^2+1)(x2-x1)^2]

设直线l为y=tanαx+b且过点(p/2,0)

即直线为y=tanαx-ptanα/2

联立得到tanα^2x^2-(tanα^2+2)px+p^2tanα^2/4=0

那么(x2-x1)^2

=(x2+x1)^2-4x1x2

=((tanα^2+2)p/tanα^2)^2-4*(p^2tanα^2/4)/tanα^2

=4p^2(tanα^2+1)/tanα^4

那么|AB|=√[(tanα^2+1)(x2-x1)^2]=2p(tanα^2+1)/tanα^2=2p/(sinα)2

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:baisebaisebaise@yeah.net
搜索
随机推荐

勇敢心资源网|豫ICP备19027550号