纯金属结晶是物质由液态→固态的过程称为凝固,由于液态金属凝固后一般都为晶体,所以液态金属→固态金属的过程也称为结晶。
基本介绍
- 中文名:纯金属结晶
- 过程:液态短程有序向固态长程有序转变
- 形核 :均质形核和异质形核
- 微观结构 :光滑界面、粗糙界面
纯金属结晶
由金工实习大家知道绝大多数金属材料都是经过冶炼后浇铸成形,即它的原始组织为铸态组织。了解金属结晶过程,对于了解铸件组织的形成,以及对它锻造性能和零件的最终使用性能的影响,都是非常必要的。而且掌握纯金属的结晶规律,对于理解合金的结晶过程和其固态相变也有很大的帮助。
液态金属的结构
经研究发现在略高于熔点时,液态金属的结构具有以下特点:
1) 是近程有序远程无序结构,见图1.25;
2) 存在着能量起伏和结构起伏。
1) 是近程有序远程无序结构,见图1.25;
2) 存在着能量起伏和结构起伏。
结晶过程的巨观现象
研究液态金属结晶的最常用、最简单的方法是热分析法。它是将金属放入坩埚中,加热熔化后切断电源,用热电偶测量液态金属的温度与时间的关係曲线,该曲线称为冷却曲线或热分析曲线,见图1.26。由该曲线可以看出,液态金属的结晶存在着两个重要的巨观
1. 过冷现象
实际结晶温度T总是低于理论结晶温度Tm的现象,称为过冷现象,它们的温度差称为过冷度,用△T表示,,纯金属结晶时的△T大小与其本性、纯度和冷却速度等有关。实验发现液态金属的纯度低△T小,冷却速度慢,△T小,反之相反。
2. 结晶过程伴随潜热释放
由纯金属的冷却曲线可以看出它是在恆温下结晶,即随时间的延长液态金属的温度不降低,这是因为在结晶时液态金属放出结晶潜热,补偿了液态金属向外界散失的热量,从而维持在恆温下结晶。当结晶结束时其温度随时间的延长继续降低。
1. 过冷现象
实际结晶温度T总是低于理论结晶温度Tm的现象,称为过冷现象,它们的温度差称为过冷度,用△T表示,,纯金属结晶时的△T大小与其本性、纯度和冷却速度等有关。实验发现液态金属的纯度低△T小,冷却速度慢,△T小,反之相反。
2. 结晶过程伴随潜热释放
由纯金属的冷却曲线可以看出它是在恆温下结晶,即随时间的延长液态金属的温度不降低,这是因为在结晶时液态金属放出结晶潜热,补偿了液态金属向外界散失的热量,从而维持在恆温下结晶。当结晶结束时其温度随时间的延长继续降低。
金属结晶的微观基本过程
由于金属是不透明的,所以无法直接观察到其结晶的微观过程,但通过对透明有机物结晶过程的观察,发现金属结晶的微观过程,就是原子由液态的短程有序逐渐向固态的长程有序转变的过程。
当液态金属过冷到其Tm以下时,它的尺寸最大的短程有序的原子集团,通过结晶潜热的释放排列成长程有序的小晶体,该小晶体称为晶核,该过程称为形核。晶核一旦形成就可不断地长大,同时其它尺寸较大的短程有序的原子集团又可形成新的晶核。因此纯金属的结晶过程是晶核不断的形成和长大的交替重叠进行的过程。其示意图见P13页图1.27,所以结晶后为多晶体,如在结晶时控制好只让一个晶核形成和长大就可得到单晶体。
当液态金属过冷到其Tm以下时,它的尺寸最大的短程有序的原子集团,通过结晶潜热的释放排列成长程有序的小晶体,该小晶体称为晶核,该过程称为形核。晶核一旦形成就可不断地长大,同时其它尺寸较大的短程有序的原子集团又可形成新的晶核。因此纯金属的结晶过程是晶核不断的形成和长大的交替重叠进行的过程。其示意图见P13页图1.27,所以结晶后为多晶体,如在结晶时控制好只让一个晶核形成和长大就可得到单晶体。
金属结晶的热力学条件
由热力学第二定律可知,物质遵循能量最小原理,即物质总是自发地向着能量降低的方向转化。图1.28给出了在等压条件下液、固态金属的自由能与温度的关係曲线,都是单调减上凸曲线,并且两者斜率不同,由热力学表达式可知液相的斜率大于固相,因为液态时原子排列的混乱程转度大,S液>S固,两曲线交点的温度为金属的理论结晶温度即熔点。这时液、固两相的自由能相等,液、固两相处于动态平衡状态,两相可以长期共存。①当T=Tm时,G液=G固,两相共存;②当T>Tm时,G液G固,金属结晶成固体,而△G=G固-G液<0,为结晶的驱动力,由此可知过冷是结晶的必要条件,△T越大,结晶驱动力越大,结晶速度越快。
形核和长大
形核
液态金属在结晶时,其形核方式一般认为主要有两种:即均质形核(对称均匀形核)和异质形核(又称非均匀形核)。
1. 均质形核
均质形核是纯净的过冷液态金属依靠自身原子的规则排列形成晶核的过程。它形成的具体过程是液态金属过冷到某一温度时,其内部尺寸较大的近程有序原子集团达到某一临界尺寸后成为晶核。
由于过冷提供了结晶的驱动力,但晶核形成后会产生新的液固界面,使体系自由能升高,所以并不是一有过冷就能形核,而是要达到一定的过冷度后,才能形核。形核速度的快慢用形核率表示N,它是单位时间内单位体中形成的晶核数目,它与过冷度即结晶驱动力大小有关,还与原了活动能力(扩散稳迁移能力)有关,见图1.28。
即N受两个相互制约的因素控制。△T大,结晶驱动力大,但温度低,原子活动能力小,所以N-△T完整的曲线,应是常态分配,但因金属结晶倾向很大,实际只能测到曲线的前半部,金属已经结晶完毕,见图1.29,由于均质形核阻力较大,当△T=0.2Tm时才能有效形核。
2. 异质形核
异质形核是液态金属原子,依附于模壁或液相中未熔固相质点表面,优先形成晶核的过程。
由实验发现异质形核所需的过冷度小,△T=0.02Tm时,就能有效形核。见右图,因为异质形核是依附在现有固体表面形核(称为形核基底或衬底),所以新增的液固界面积小,界面能低,结晶阻力小。另外,实际液态金属中总是或多或小地存在着未熔固体杂质,而且在浇注时液态金属总是要与模壁接触,因此实际液态金属结晶时,首先以异质形核方式形核。但是应该注意的是,并不是任何固体表面都能促进异质形核。只有晶核与基底之间的界面能越小时,这样的基底才能促进异质形核。
由形核的讨论可知过冷是结晶的必要条件,但过冷后还需通过能量起伏和结构起伏,使近程有序的原子集团达到某一临界尺寸后才能形成晶核。
1. 均质形核
均质形核是纯净的过冷液态金属依靠自身原子的规则排列形成晶核的过程。它形成的具体过程是液态金属过冷到某一温度时,其内部尺寸较大的近程有序原子集团达到某一临界尺寸后成为晶核。
由于过冷提供了结晶的驱动力,但晶核形成后会产生新的液固界面,使体系自由能升高,所以并不是一有过冷就能形核,而是要达到一定的过冷度后,才能形核。形核速度的快慢用形核率表示N,它是单位时间内单位体中形成的晶核数目,它与过冷度即结晶驱动力大小有关,还与原了活动能力(扩散稳迁移能力)有关,见图1.28。
即N受两个相互制约的因素控制。△T大,结晶驱动力大,但温度低,原子活动能力小,所以N-△T完整的曲线,应是常态分配,但因金属结晶倾向很大,实际只能测到曲线的前半部,金属已经结晶完毕,见图1.29,由于均质形核阻力较大,当△T=0.2Tm时才能有效形核。
2. 异质形核
异质形核是液态金属原子,依附于模壁或液相中未熔固相质点表面,优先形成晶核的过程。
由实验发现异质形核所需的过冷度小,△T=0.02Tm时,就能有效形核。见右图,因为异质形核是依附在现有固体表面形核(称为形核基底或衬底),所以新增的液固界面积小,界面能低,结晶阻力小。另外,实际液态金属中总是或多或小地存在着未熔固体杂质,而且在浇注时液态金属总是要与模壁接触,因此实际液态金属结晶时,首先以异质形核方式形核。但是应该注意的是,并不是任何固体表面都能促进异质形核。只有晶核与基底之间的界面能越小时,这样的基底才能促进异质形核。
由形核的讨论可知过冷是结晶的必要条件,但过冷后还需通过能量起伏和结构起伏,使近程有序的原子集团达到某一临界尺寸后才能形成晶核。
晶体的长大
晶核形成以后就会立刻长大,晶核长大的实质就是液态金属原子向晶核表面堆砌的过程,也是固液界面向液体中迁移的过程。它也需要过冷度,该过冷度称为动态过冷度用△Tk表示,一般很小难以测定。
经研究发现晶体的生长方式主要与固液界面的微观结构有关,而晶体的生长形态主要与固液界面前沿的温度梯度有关。
1. 固液界面的微观结构和晶体长大机制
1) 固液界面的微观结构
经研究发现固液界面的微观结构主要有两类。
(1) 光滑界面:即液固界面是截然分开的,95%或5%的位置为固相原子占据。它由原子密排面组成,故也称为小平面界面见右图 或图1.30(a),
(2) 粗糙界面:即液固界面不是截然分开的,50%的位置被固相原子占据,还有50%空着,故也称为非小平面界面。见右图或图1.30(b)。
2) 晶体的长大机制
(1) 粗糙界面的长大机制——连续垂直长大机制
即液相原子不断地向空着的结晶位置上堆砌,并且在堆砌过程中固液界面上的台阶始终不会消失,使界面垂直向液相中推进,故其长大速度快,金属及合金的长大机制多以这种方式进行,因为它们的固液界面多为粗糙面。
(2) 光滑界面的长大机制——侧向长大机制
对于完全光滑的固液界面多以二维晶核机制长大。
a. 二维晶核机制:由于固液界面是完全光滑的,则单个液相原子很难在其上堆砌(增加界面积大,界面能高),所以它先以均质形核方式形成一个二维晶核,堆砌到原固液界面上,为液相原子的堆砌提供台阶,而进行侧向长大。长满一层后,晶体生长中断,等新的二维晶核形成后再继续长大,因此它是不连续侧向生长,长大速度很慢,与实际情况相差较大,见图1.31(a)。
对于有缺陷的光滑界面,多以晶体缺陷生长机制长大。
b. 晶体缺陷生长机制:见图1.31(b)或下图,即在光滑界面上有露头的螺型位错,它的存在为液相原子的堆砌提供了台阶(靠背),液相原子可连续地堆砌,使固液界面进行螺旋状连续侧向生长,其长大速度较快,并与实际情况比较接近,非金属和金属化合物多为光滑界面,它们多以这种机制进行生长。
2. 固液界面前沿的温度梯度与纯金属晶体的生长形态
1) 固液界面前沿的温度梯度
固液界面前沿的温度梯度主要有两种:即正温度梯度和负温度梯度。
(1) 正温度梯度( )
见P16页图1.32(a),由于液态金属在铸型中冷却时热量主要通过型壁散出,故结晶首先从型壁开始,液态金属的热量和结晶潜热都通过型壁和已结晶固相散出,因此固液界面前沿的温度随距离x的增加而升高,即△T随x↑而↓。
(2) 负温度梯度
见图1.32(b.c),若金属在坩埚中加热熔化后,随坩埚一起降温冷却,当液态金属处于过冷状态时,其内部某些区域会首先结晶,这样放出的结晶潜热使固液界面温度升高,因此固液界面前沿的温度随距离x的增加而降低,即△T随x↑而↓。
2) 纯金属晶体的生长形态
纯金属的固液界面从微观角度说是粗糙界面,它的生长形态主要受界面前沿的温度梯度影响。
(1) 在正温度梯度时按平面状生长
见图1.33(a),由前面的介绍我们知道粗糙界面的生长机制为连续垂直生长,在正温度梯度时,界面上的凸起部分若想较快的朝前生长,就会进入△T较小的区域,使其生长速度减慢,因此始终维持界面为平面状。
(2) 在负温度梯度时按树枝晶生长
见图1.33、1.34,由于在负温度梯度时,固液界面前沿随x↑ΔT↑,因此界面上的凸起部分能接解到△T更大的区域而超前生长,长成一次晶轴,在一次晶轴侧面也会形成负温度梯度,而长出二次晶轴;二次晶轴上又会生长三次晶轴。就相先长出树桿再长出分枝一样,故称为枝晶生长。
对于立方晶系各次晶轴间成垂直关係(沿<100生长),如果枝晶在三维空间均衡发展(即x、y、z三方向长大趋势差不多)最后得到等轴晶粒,由于通常金属结晶完毕时,各次晶轴相互接触,形成一个充实的晶粒,所以看不到其枝晶形态。
但在结晶时各晶轴间不能及时得到液相的补充,最后在枝间就会形成孔洞,结晶结束后就能观察到枝晶形态,液相中有杂质时,它们一般在枝间处,结晶后经浸蚀也能看出树枝晶形态。
经研究发现晶体的生长方式主要与固液界面的微观结构有关,而晶体的生长形态主要与固液界面前沿的温度梯度有关。
1. 固液界面的微观结构和晶体长大机制
1) 固液界面的微观结构
经研究发现固液界面的微观结构主要有两类。
(1) 光滑界面:即液固界面是截然分开的,95%或5%的位置为固相原子占据。它由原子密排面组成,故也称为小平面界面见右图 或图1.30(a),
(2) 粗糙界面:即液固界面不是截然分开的,50%的位置被固相原子占据,还有50%空着,故也称为非小平面界面。见右图或图1.30(b)。
2) 晶体的长大机制
(1) 粗糙界面的长大机制——连续垂直长大机制
即液相原子不断地向空着的结晶位置上堆砌,并且在堆砌过程中固液界面上的台阶始终不会消失,使界面垂直向液相中推进,故其长大速度快,金属及合金的长大机制多以这种方式进行,因为它们的固液界面多为粗糙面。
(2) 光滑界面的长大机制——侧向长大机制
对于完全光滑的固液界面多以二维晶核机制长大。
a. 二维晶核机制:由于固液界面是完全光滑的,则单个液相原子很难在其上堆砌(增加界面积大,界面能高),所以它先以均质形核方式形成一个二维晶核,堆砌到原固液界面上,为液相原子的堆砌提供台阶,而进行侧向长大。长满一层后,晶体生长中断,等新的二维晶核形成后再继续长大,因此它是不连续侧向生长,长大速度很慢,与实际情况相差较大,见图1.31(a)。
对于有缺陷的光滑界面,多以晶体缺陷生长机制长大。
b. 晶体缺陷生长机制:见图1.31(b)或下图,即在光滑界面上有露头的螺型位错,它的存在为液相原子的堆砌提供了台阶(靠背),液相原子可连续地堆砌,使固液界面进行螺旋状连续侧向生长,其长大速度较快,并与实际情况比较接近,非金属和金属化合物多为光滑界面,它们多以这种机制进行生长。
2. 固液界面前沿的温度梯度与纯金属晶体的生长形态
1) 固液界面前沿的温度梯度
固液界面前沿的温度梯度主要有两种:即正温度梯度和负温度梯度。
(1) 正温度梯度( )
见P16页图1.32(a),由于液态金属在铸型中冷却时热量主要通过型壁散出,故结晶首先从型壁开始,液态金属的热量和结晶潜热都通过型壁和已结晶固相散出,因此固液界面前沿的温度随距离x的增加而升高,即△T随x↑而↓。
(2) 负温度梯度
见图1.32(b.c),若金属在坩埚中加热熔化后,随坩埚一起降温冷却,当液态金属处于过冷状态时,其内部某些区域会首先结晶,这样放出的结晶潜热使固液界面温度升高,因此固液界面前沿的温度随距离x的增加而降低,即△T随x↑而↓。
2) 纯金属晶体的生长形态
纯金属的固液界面从微观角度说是粗糙界面,它的生长形态主要受界面前沿的温度梯度影响。
(1) 在正温度梯度时按平面状生长
见图1.33(a),由前面的介绍我们知道粗糙界面的生长机制为连续垂直生长,在正温度梯度时,界面上的凸起部分若想较快的朝前生长,就会进入△T较小的区域,使其生长速度减慢,因此始终维持界面为平面状。
(2) 在负温度梯度时按树枝晶生长
见图1.33、1.34,由于在负温度梯度时,固液界面前沿随x↑ΔT↑,因此界面上的凸起部分能接解到△T更大的区域而超前生长,长成一次晶轴,在一次晶轴侧面也会形成负温度梯度,而长出二次晶轴;二次晶轴上又会生长三次晶轴。就相先长出树桿再长出分枝一样,故称为枝晶生长。
对于立方晶系各次晶轴间成垂直关係(沿<100生长),如果枝晶在三维空间均衡发展(即x、y、z三方向长大趋势差不多)最后得到等轴晶粒,由于通常金属结晶完毕时,各次晶轴相互接触,形成一个充实的晶粒,所以看不到其枝晶形态。
但在结晶时各晶轴间不能及时得到液相的补充,最后在枝间就会形成孔洞,结晶结束后就能观察到枝晶形态,液相中有杂质时,它们一般在枝间处,结晶后经浸蚀也能看出树枝晶形态。
晶粒大小控制
晶粒大小对金属性能的影响
由实验发现金属结晶后,在常温下晶粒越细小其强度、硬度、塑性、韧性越好,如纯铁晶粒平均直径从9.7mm减小到2.5mm,抗拉强度从165MPa上升211MPa,伸长率从28.8%上升到39.5%,通常将这种方法称为细晶强化,它的最大优点是能同时提高金属材料的强度、硬度、塑性、韧性,而以后介绍的各种强化方法,都是通过牺牲材料塑性、韧性来换取提高材料的强度、硬度。
细化晶粒的途径
研究发现有两个途径:1.增加形核率N;2.降低长大速度;
细化晶粒的方法
常用的有以下几种
1. 增大金属的过冷度
因为↑△T,N增大,长大速度也增大,但前者大于后者,故可使晶粒细化,具体方法是对薄壁铸件用加快冷却速度的方法,来增大△T,1)金属模代砂模。
2. 在金属模外通循环水冷却
3. 降低浇注温度(提高形核率)
近二三十年来,快速凝固(V冷>104K/S)技术的发展,人们已能得到尺寸为0.1~1.0 数量的超细晶粒金属材料,其性能不仅强度、韧性高,而且具有超塑性,优异的耐蚀性,抗晶粒长大性、抗幅照性等。成为具有高性能的新型金属材料。
4. 孕育(变质)处理
对于厚壁铸件,用激冷的方法难以使其内部晶粒细化,并且冷速过快易使铸件变形开裂,但在液态金属浇注前向其中加入少量孕育剂或变质剂,可起到↑异质形核率或阻碍晶粒长大作用,从而使大型铸件从外到里均能得到细小的晶粒,但对不同的材料加入的孕育剂或变质剂不同,如碳钢加钒、钛(形成TiN、TiC、VN、VC促进异质形核);铸铁加硅铁硅钙(促进石墨细化);铝硅合金加钠盐(阻碍晶粒长大)。
1. 增大金属的过冷度
因为↑△T,N增大,长大速度也增大,但前者大于后者,故可使晶粒细化,具体方法是对薄壁铸件用加快冷却速度的方法,来增大△T,1)金属模代砂模。
2. 在金属模外通循环水冷却
3. 降低浇注温度(提高形核率)
近二三十年来,快速凝固(V冷>104K/S)技术的发展,人们已能得到尺寸为0.1~1.0 数量的超细晶粒金属材料,其性能不仅强度、韧性高,而且具有超塑性,优异的耐蚀性,抗晶粒长大性、抗幅照性等。成为具有高性能的新型金属材料。
4. 孕育(变质)处理
对于厚壁铸件,用激冷的方法难以使其内部晶粒细化,并且冷速过快易使铸件变形开裂,但在液态金属浇注前向其中加入少量孕育剂或变质剂,可起到↑异质形核率或阻碍晶粒长大作用,从而使大型铸件从外到里均能得到细小的晶粒,但对不同的材料加入的孕育剂或变质剂不同,如碳钢加钒、钛(形成TiN、TiC、VN、VC促进异质形核);铸铁加硅铁硅钙(促进石墨细化);铝硅合金加钠盐(阻碍晶粒长大)。