数论中,欧拉乘积公式(Euler product formula)是指狄利克雷级数可表示为一指标为素数的无穷乘积。这一乘积以瑞士数学家莱昂哈德·欧拉的名字命名,他证明了黎曼ζ函式可表示为此无穷乘积的形式。
基本介绍
- 中文名:欧拉乘积公式
- 外文名:Euler product formula
- 别称:Euler乘积公式
- 提出者: Leonhard Euler
- 提出时间:1973年
- 套用学科:数学
- 相关人物: Riemann
简介
对任意複数 s, 若
则:
。这一公式是瑞士数学家 Leonhard Euler 在1737 年的一篇题为《对无穷级数的若干观察》的论文中提出并加以证明的, 式中的 n 为自然数 (即正整数),p 为素数。欧拉乘积公式将一个对自然数的求和表达式与一个对素数的连乘积表达式联繫在一起, 蕴涵着有关素数分布的重要信息。 这一信息在相隔了漫长的122 年之后终于被 Riemann 所破译,于是便有了 Riemann 的着名论文 《论小于给定数值的素数个数》。 为了纪念 Riemann 的贡献, Euler 乘积公式左端的求和式被冠以 Riemann的大名, 并沿用了 Riemann 使用过的记号 ζ(s), 称为Riemann ζ 函式。


定义
假设
为一积性函式,则狄利克雷级数
等于欧拉乘积
其中,乘积对所有素数
进行,
则可表示为






这可以看作形式母函式,形式欧拉乘积展开的存在性与
为积性函式两者互为充要条件。
为完全积性函式时可得到一重要的特例。此时
为等比级数,有





欧拉乘积公式:对任意複数 s, 若
则


证明
Euler 乘积公式的证明十分简单, 唯一要小心的就是对无穷级数和无穷乘积的处理,不能随意使用有限级数和有限乘积的性质。 我们在下面证明的是一个更为普遍的结果, 欧拉 乘积公式将作为该结果的特例出现。
广义 Euler 乘积公式: 设 f(n) 为满足
, 且
的函式 (n1、 n2均为自然数), 则:



证明: 由于
, 因此
绝对收敛。 考虑连乘积中
的部分 (有限乘积), 由于级数绝对收敛, 乘积又只有有限项, 因此可以使用与普通有限求和及乘积一样的结合律及分配律。 利用 f(n) 的乘积性质可得:










由于
, 因此广义 Euler 乘积公式也可以写成:


在广义 欧拉乘积公式中取



从上述证明中我们可以看到, Euler 乘积公式成立的关键在于每个自然数都具有唯一素数分解式这一基本性质, 即所谓的算术基本定理 (fundamental theorem of arithmetic)。