错位重排是指一种比较难理解的複杂数学模型,是伯努利和欧拉在错装信封时发现的,因此又称伯努利-欧拉装错信封问题。
基本介绍
- 中文名:错位重排
- 属于:比较难理解的複杂数学模型
- 又称:伯努利-欧拉装错信封问题
- 人物:伯努利和欧拉
简介
表述为:编号是1、2、…、n的n封信,装入编号为1、2、…、n的n个信封,要求每封信和信封的编号不同,问有多少种装法?
对这类问题有个固定的递推公式,记n封信的错位重排数为Dn,则D1=0,D2=1,
Dn=(n-1)(Dn-2+Dn-1) 此处n-2、n-1为下标。
对这类问题有个固定的递推公式,记n封信的错位重排数为Dn,则D1=0,D2=1,
Dn=(n-1)(Dn-2+Dn-1) 此处n-2、n-1为下标。
n>2
我们只需记住Dn的前几项:D1=0,D2=1,D3=2,D4=9,D5=44。我们只需要记住结论,进行计算就可以。
【例】五个盒子都贴了标籤,全部贴错的可能性有多少种?
即全贴错标籤,N个项数全部排错的可能数,可以总结出数列:
0,1,2,9,44,265,………
可以得到这样一个递推公式:(N-1)*(A+B)=C (A是第一项,B是第二项,C是第三项,N是项数)
s(n)=(n-1) [ s(n-1)+s(n-2)]
s(2)=1,s(3)=2
s(4)=3*(1+2)=9
s(5)=4*(2+9)=44
s(6)=5*(9+44)=265 ....................
公式由来 把编号 1-------------n的小球放到编号1------n的盒子里,全错位排列(1号球不在1号盒,2号球不在2号盒,依次类推),共有几种情况?
------------------------------------------------------
设n个球全放错的情况有 s(n)种
1号盒子可以选[2,n] 共(n-1)种选择,设1号盒选择某号球后对应的错排次数是 a
(n-1)个选择对应的错排次数是相同的 ,则 s(n)=(n-1)a
不妨设1号盒选择2号球
1: 2号盒选择1号球,剩下 (n-2)个球去错排,有 s(n-2)种情况
2: 2号盒不选择1号球,则后面总有一个盒子选择1号球,我们可以把1号球和2号球在放入盒子前互换位置,
对问题没有影响,此时就相当于对(n-1)个球去错排,有s(n-1)种情况
于是a= s(n-1)+s(n-2)
s(n)=(n-1) [ s(n-1)+s(n-2)]
s(2)=1,s(3)=2
s(4)=3*(1+2)=9
s(5)=4*(2+9)=44
s(6)=5*(9+44)=265 ....................
【例题】四位厨师聚餐时各做了一道拿手菜。现在要求每人去品尝一道菜,但不能尝自己做的那道菜。问共有几种不同的尝法?
A.6种 B.9种 C.12种 D.15种
A.6种 B.9种 C.12种 D.15种
根据4位厨师的错位重排数D4=9,所以由公式可以看出是有9种。
通项公式
已经D1=0,D2=1,Dn=(n-1)(Dn-2+Dn-1),求Dn。
Dn = (n-1)Dn-1 + (n-1)Dn-2
Dn-nDn-1 = -[Dn-1 - (n-1)Dn-2]=(-1)^2*[Dn-2 - (n-2)Dn-3]=...(-1)^(n-2)*(D2-2D1)
设Dn-nDn-1=Cn
Cn=(-1)^(n-2)*1=(-1)^n
则 Dn = (-1)^n + nDn-1
两边同除(-1)^n

设Dn/(-1)^n=Bn
Bn = 1 - nBn-1
两边同除n!

设Bn/n!=An
An+An-1=1/n!..................(1)
An-1+An-2=1/(n-1)!.........(2)
............
A2+A1=1/2!......................(n-1)
A1+D1=0..........................(n)
(1)-(2)+(3)..............(n)得

