《数理逻辑引论与归结原理》是科学出版社2009年1月1日出版的图书,全书共9章,内容可分为Boole代数理论,命题演算与谓词演算理论,归结原理理论,多值逻辑的最新理论等4部分。
基本介绍
- 书名:数理逻辑引论与归结原理
- 页数:335页
- 装帧:平装: 335页
- 开本:16
图书信息
出版社: 科学出版社; 第2版 (2009年1月1日)
正文语种: 简体中文
ISBN: 9787030228994, 7030228995
条形码: 9787030228994
尺寸: 23.8 x 17 x 2.2 cm
重量: 680 g
内容简介
Introduction to Mathematical Logic and Resolution Principle(数理逻辑引论与归结原理)在第一版的基础上进行修订再版,同时,在第一版的基础上对“计量逻辑学”,关于一阶系统K完备性的证明等诸多内容做了补充或改写。《Introduction to Mathematical…(数理逻辑引论与归结原理)》可供计算机专业、套用数学专业、人工智慧专业的研究生与高年级本科生及教师阅读。
目录
Preface
Chapter 1 Preliminaries
1.1 Partially ordered sets
1.2 Lattices
1.3 Boolean algebras
Chapter 2 Propositional Calculus
2.1 Propositions and their symbolization
2.2 Semantics of propositional calculus
2.3 Syntax of propositional calculus
Chapter 3 Semantics of First Order Predicate Calculus
3.1 First order languages
3.2 Interpretations and logically valid formulas
3.3 Logical equivalences
Chapter 4 Syntax of First Order Predicate Calculus
4.1 The formal system KL
4.2 Provable equivalence relations
4.3 Prenex normal forms
4.4 Completeness of the first order system KL
*4.5 Quantifier-free formulas
Chapter 5 Skolem's Standard Forms and Herbrand's Theorems
5.1 Introduction
5.2 Skolem standard forms
5.3 Clauses
*5.4 Regular function systems and regular universes
5.5 Herbrand universes and Herbrand's theorems
5.6 The Davis-Putnam method
Chapter 6 Resolution Principle
6.1 Resolution in propositional calculus
6.2 Substitutions and unifications
6.3 Resolution Principle in predicate calculus
6.4 Completeness theorem of Resolution Principle
6.5 A simple method for searching clause sets S
Chapter 7 Refinements of Resolution
7.1 Introduction
7.2 Semantic resolution
7.3 Lock resolution
7.4 Linear resolution
Chapter 8 Many-Valued Logic Calculi
8.1 Introduction
8.2 Regular implication operators
8.3 MV-algebras
8.4 Lukasiewicz propositional calculus
8.5 R0-algebras
8.6 The propositional deductive system L*
Chapter 9 Quantitative Logic
9.1 Quantitative logic theory in two-valued propositional logic system L
9.2 Quantitative logic theory in L ukasiewicz many-valued propositional logic systems Ln and Luk
9.3 Quantitative logic theory in many-valued R0-propositional logic systems L*n and L*
9.4 Structural characterizations of maximally consistent theories
9.5 Remarks on Godel and Product logic systems
Bibliography
Indent